

Math 217 Fall 2025
Quiz 36 – Solutions

Dr. Samir Donmazov

1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:

(a) A square matrix A is *orthogonally diagonalizable* if ...

Solution: A square matrix A is *orthogonally diagonalizable* if there exists an orthogonal matrix Q (so $Q^T Q = I$) and a diagonal matrix D such that

$$Q^T A Q = D.$$

(b) An *elementary matrix* is ...

Solution: An *elementary matrix* is an $n \times n$ matrix obtained by performing a single elementary row operation on the identity matrix I_n .

(c) Suppose U is a vector space and $u_1, u_2, \dots, u_n \in U$. The list (u_1, u_2, \dots, u_n) is *linearly independent* if ...

Solution: The list (u_1, u_2, \dots, u_n) is *linearly independent* if whenever

$$a_1 u_1 + a_2 u_2 + \cdots + a_n u_n = 0$$

for scalars a_1, \dots, a_n , it follows that

$$a_1 = a_2 = \cdots = a_n = 0.$$

2. Suppose V is a finite dimensional vector space and $T: V \rightarrow V$ is a linear transformation. Show: if $\chi_T(\lambda) = 0$, then

$$1 \leq \text{gemu}(\lambda) \leq \text{almu}(\lambda).$$

Solution: If $\chi_T(\lambda) = 0$, then λ is a root of the characteristic polynomial of T , so

$$\det(T - \lambda I) = 0.$$

Thus $T - \lambda I$ is not invertible, so its kernel is nontrivial:

$$\ker(T - \lambda I) \neq \{0\}.$$

*For full credit, please write out fully what you mean instead of using shorthand phrases.

Hence there exists a nonzero vector v with $(T - \lambda I)v = 0$, i.e. $T(v) = \lambda v$. Therefore the eigenspace

$$E_\lambda = \ker(T - \lambda I)$$

is nonzero and

$$\text{gemu}(\lambda) = \dim(E_\lambda) \geq 1.$$

For each eigenvalue λ we always have

$$\text{gemu}(\lambda) \leq \text{almu}(\lambda),$$

where $\text{almu}(\lambda)$ is the multiplicity of λ as a root of $\chi_T(x)$.

Combining these observations gives

$$1 \leq \text{gemu}(\lambda) \leq \text{almu}(\lambda).$$

3. If A is a symmetric $n \times n$ matrix and $U \subset \mathbb{R}^n$ is a subspace such that $A[U] \subset U$, then $A[U^\perp] \subset U^\perp$.

Solution: Since A is symmetric, we have

$$(Av) \cdot u = v \cdot (Au) \quad \text{for all } u, v \in \mathbb{R}^n.$$

Let $v \in U^\perp$. We want to show $Av \in U^\perp$, i.e. $(Av) \cdot u = 0$ for all $u \in U$.

Take any $u \in U$. By assumption, $Au \in U$. Since $v \in U^\perp$, we have

$$v \cdot (Au) = 0.$$

Using symmetry of A ,

$$(Av) \cdot u = v \cdot (Au) = 0.$$

Thus Av is orthogonal to every vector in U , so $Av \in U^\perp$. Hence $A[U^\perp] \subset U^\perp$.

4. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.

(a) Every eigenvalue of a symmetric matrix is a real number.

Solution: TRUE.

Let A be a real symmetric $n \times n$ matrix and let $v \neq 0$ be an eigenvector with eigenvalue λ , so $Av = \lambda v$.

Take the dot product of both sides with v :

$$(Av) \cdot v = (\lambda v) \cdot v = \lambda(v \cdot v).$$

Using symmetry of A ,

$$(Av) \cdot v = v \cdot (Av) = v \cdot (\lambda v) = \bar{\lambda}(v \cdot v),$$

since the scalar exits on the second slot as a complex conjugate.

Thus,

$$\lambda(v \cdot v) = \bar{\lambda}(v \cdot v).$$

Because $v \cdot v > 0$, we conclude

$$\lambda = \bar{\lambda},$$

which means λ is real.

(b) If $\mu, \nu \in \mathbb{R}$ are distinct eigenvalues for $T: V \rightarrow V$, then $E_\mu \cap E_\nu = \{0\}$.

Solution: TRUE.

Let $v \in E_\mu \cap E_\nu$. Then

$$T(v) = \mu v \quad \text{and} \quad T(v) = \nu v.$$

Hence

$$\mu v = \nu v \quad \Rightarrow \quad (\mu - \nu)v = 0.$$

Since $\mu \neq \nu$, it follows that $v = 0$. Thus $E_\mu \cap E_\nu = \{0\}$.

(c) If $W \subset \mathbb{R}^n$ is a subspace of \mathbb{R}^n and $x \in \mathbb{R}^n \setminus W$, then $x \in W^\perp$.

Solution: FALSE.

Take $W = \text{Span}((1, 0)) \subset \mathbb{R}^2$. Then $W^\perp = \text{Span}((0, 1))$.

Let $x = (1, 1)$. Then $x \notin W$ (it is not a multiple of $(1, 0)$), but

$$x \cdot (1, 0) = 1 \neq 0,$$

so x is not orthogonal to W and hence $x \notin W^\perp$. This is a counterexample.

(d) Suppose $\mu, \nu \in \mathbb{R}$ are distinct eigenvalues for $T: V \rightarrow V$. If $v_\mu \in E_\mu$ and $v_\nu \in E_\nu$, then v_μ and v_ν are linearly independent.

Solution: TRUE.

Assume $v_\mu \neq 0, v_\nu \neq 0$ and

$$T(v_\mu) = \mu v_\mu, \quad T(v_\nu) = \nu v_\nu, \quad \mu \neq \nu.$$

Suppose $av_\mu + bv_\nu = 0$ for some scalars a, b . Apply T :

$$T(av_\mu + bv_\nu) = aT(v_\mu) + bT(v_\nu) = a\mu v_\mu + b\nu v_\nu = 0.$$

We now have

$$\begin{cases} av_\mu + bv_\nu = 0, \\ a\mu v_\mu + b\nu v_\nu = 0. \end{cases}$$

Multiply the first equation by ν and subtract:

$$(a\mu v_\mu + b\nu v_\nu) - (a\nu v_\mu + b\nu v_\nu) = a(\mu - \nu)v_\mu = 0.$$

Since $\mu \neq \nu$ and $v_\mu \neq 0$, we get $a = 0$. Then $b v_\nu = 0$ in the first equation gives $b = 0$. Thus the only linear combination giving 0 is the trivial one, so v_μ and v_ν are linearly independent.